16,561 research outputs found

    Construction of N = 2 Chiral Supergravity Compatible with the Reality Condition

    Get PDF
    We construct N = 2 chiral supergravity (SUGRA) which leads to Ashtekar's canonical formulation. The supersymmetry (SUSY) transformation parameters are not constrained at all and auxiliary fields are not required in contrast with the method of the two-form gravity. We also show that our formulation is compatible with the reality condition, and that its real section is reduced to the usual N = 2 SUGRA up to an imaginary boundary term.Comment: 16 pages, late

    A cooled telescope for infrared balloon astronomy

    Get PDF
    The characteristics of a 16 inch liquid helium cooled Cassegrain telescope with vibrating secondary mirror are discussed. The telescope is used in making far infrared astronomical observations. The system houses several different detectors for multicolor photometry. The cooled telescope has a ten to one increase in signal-to-noise ratio over a similar warm version and is installed in a high altitude balloon gondola to obtain data on the H2 region of the galaxy

    Modelling Planck-scale Lorentz violation via analogue models

    Full text link
    Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200

    Effect of motion frequency spectrum on subjective comfort response

    Get PDF
    In order to model passenger reaction to present and future aircraft environments, it is necessary to obtain data in several ways. First, of course, is the gathering of environmental and passenger reaction data on commercial aircraft flights. In addition, detailed analyses of particular aspects of human reaction to the environment are best studied in a controllable experimental situation. Thus the use of simulators, both flight and ground based, is suggested. It is shown that there is a reasonably high probability that the low frequency end of the spectrum will not be necessary for simulation purposes. That is, the fidelity of any simulation which omits the very low frequency content will not yield results which differ significantly from the real environment. In addition, there does not appear to be significant differences between the responses obtained in the airborne simulator environment versus those obtained on commercial flights

    Mechanics of universal horizons

    Full text link
    Modified gravity models such as Ho\v{r}ava-Lifshitz gravity or Einstein-{\ae}ther theory violate local Lorentz invariance and therefore destroy the notion of a universal light cone. Despite this, in the infrared limit both models above possess static, spherically symmetric solutions with "universal horizons" - hypersurfaces that are causal boundaries between an interior region and asymptotic spatial infinity. In other words, there still exist black hole solutions. We construct a Smarr formula (the relationship between the total energy of the spacetime and the area of the horizon) for such a horizon in Einstein-{\ae}ther theory. We further show that a slightly modified first law of black hole mechanics still holds with the relevant area now a cross-section of the universal horizon. We construct new analytic solutions for certain Einstein-{\ae}ther Lagrangians and illustrate how our results work in these exact cases. Our results suggest that holography may be extended to these theories despite the very different causal structure as long as the universal horizon remains the unique causal boundary when matter fields are added.Comment: Minor clarifications. References update

    On the Ado Theorem for finite Lie conformal algebras with Levi decomposition

    Full text link
    We prove that a finite torsion-free conformal Lie algebra with a splitting solvable radical has a finite faithful conformal representation.Comment: 11 page

    On the degeneracies of the mass-squared differences for three-neutrino oscillations

    Full text link
    Using an algebraic formulation, we explore two well-known degeneracies involving the mass-squared differences for three-neutrino oscillations assuming CP symmetry is conserved. For vacuum oscillation, we derive the expression for the mixing angles that permit invariance under the interchange of two mass-squared differences. This symmetry is most easily expressed in terms of an ascending mass order. This can be used to reduce the parameter space by one half in the absence of the MSW effect. For oscillations in matter, we derive within our formalism the known approximate degeneracy between the standard and inverted mass hierarchies in the limit of vanishing θ13\theta_{13}. This is done with a mass ordering that permits the map Δ31↦−Δ31\Delta_{31} \mapsto -\Delta_{31}. Our techniques allow us to translate mixing angles in this mass order convention into their values for the ascending order convention. Using this dictionary, we demonstrate that the vacuum symmetry and the approximate symmetry invoked for oscillations in matter are distinctly different.Comment: 5 pages, revised manuscrip

    Model-Independent Test of General Relativity: An Extended post-Einsteinian Framework with Complete Polarization Content

    Full text link
    We develop a model-independent test of General Relativity that allows for the constraint of the gravitational wave (GW) polarization content with GW detections of binary compact object inspirals. We first consider three modified gravity theories (Brans-Dicke theory, Rosen's theory and Lightman-Lee theory) and calculate the response function of ground-based detectors to gravitational waves in the inspiral phase. This allows us to see how additional polarizations predicted in these theories modify the General Relativistic prediction of the response function. We then consider general power-law modifications to the Hamiltonian and radiation-reaction force and study how these modify the time-domain and Fourier response function when all polarizations are present. From these general arguments and specific modified gravity examples, we infer an improved parameterized post-Einsteinian template family with complete polarization content. This family enhances General Relativity templates through the inclusion of new theory parameters, reducing to the former when these parameters acquire certain values, and recovering modified gravity predictions for other values, including all polarizations. We conclude by discussing detection strategies to constrain these new, polarization theory parameters by constructing certain null channels through the combination of output from multiple detectors.Comment: 20 pages, 1 figure, added erratum correcting some intermediate equation

    Hawking radiation without black hole entropy

    Get PDF
    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws of black hole mechanics do not apply, and in situations in which the notion of black hole entropy does not even make any sense. This observation has important implications for any derivation of black hole entropy that seeks to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma
    • …
    corecore